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Formulas of Microstrip with a Truncated Substrate
by Synthetic Asymptotes—A Novel

Analysis Technique
Y. Leonard Chow, Member, IEEE,and Wan C. Tang

Abstract—A substrate is usually truncated far enough to avoid
disturbing the microstrip-line characteristics. Such uneconomical
practice is not necessary if the disturbances as a function of trunca-
tion are known in formulas and, therefore, are easily compensated.
This paper derives the desired formulas from the novel technique
of synthetic asymptotes. Truncation at both sides of a line is derived
here with 3% average error. For the practical one-sided truncation
at the edge of a chip or circuit board, the average error is only half
at 1.5%.

Index Terms—Microstrip, synthetic asymptote, truncated sub-
strate.

I. INTRODUCTION

I T IS economical to make the maximum use of a circuit
board, or a chip, by printing the microstrip lines very close

to the truncated edges of the substrate. This is not usually
done since such closeness to edge disturbs it in the form of an
increase in characteristic impedance and reduction in effective
dielectric constant from the designed values.

Restoration to the designed values is possible, in principle,
through synthesis by widening and lengthening the microstrip.
This is tedious, however, since the disturbances are normally
obtainable by numerical computation [1], [2] or lengthy space
harmonics [3]. This difficulty may be overcome by providing
simple formulas. Curve-fitted formulas (like those in [3]) are
difficult, as there are at least three design parameters to curve fit,
namely, the dielectric constant, linewidth , and substrate
truncation distance ; the substrate thicknessmay be used as
a normalization factor to distances.

This difficulty is overcome if the formulas are derived from
theoretical considerations. Since they are derived, the formulas
are accurate over the full range of all three parameters, and give
good physical insight.

A. Principle of Synthetic Asymptote

The theoretical methods involve three methods: the synthetic
asymptote [4] with the help of the classical images and multi-
pole expansion.

The first method, i.e., synthetic asymptote, is a novel tech-
nique for microwave. Its use was first tested by one of the au-
thors in the grounding systems in power engineering [4]–[7].
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The principle of the technique is as follows. Assume that the two
regularasymptotes of a function are analytically known, say, at
a parameter’s near limit of zero and far limit of infinity. The
technique is thento construct a synthetic asymptote so that it
converges into the original regular asymptotes at the two limits.
This synthesized asymptote leads to the desired formula.

For asymptotes of two independent parameters (e.g., the trun-
cating distance and substrate thickness in this paper), the syn-
thetic asymptote derivations are to be applied twice. If the reg-
ular asymptotes themselves are not known, they are also derived.

Despite different variations [4]–[7], the principle is the same
and simple—a synthetic asymptote is a formula constructed to
match the original asymptotes at their limits. The average error
is frequently 3% or less.

The second method is the classical charge images [8] on a
regular (nontruncated) substrate. It is used in this paper to derive
the regular asymptotes needed, but unavailable in the literature.

The third is the multipole expansion [9], which is useful for
the case where only the asymptote value at the parameter limit is
known. This regular asymptote must be a series of the multipole
terms from the Laplace’s equation. Only dominant terms are
needed. The coefficients of the terms are then found from the
one asymptotic value.

Each step in constructing a synthetic asymptote or a reg-
ular asymptote can be simple. However, there are a number of
asymptotes and, hence, a number of steps.Therefore, to avoid
confusion, a flowchart of the steps is included, as shown in
Fig. 1. Each step is identified with a related section (e.g., Sec-
tion II) or with the Appendix.

The flowchart and figure depicted in Fig. 1 assume that the
truncation is cut symmetrically on both sides of the microstrip
line. Equation (20) easily converts the formulas to allow the
truncation to be on one side only.Despite the length of the
derivations, the resulted formulas are quite simple and conve-
nient for calculation with a calculator. The accuracy of the for-
mulas is good.

B. Geometry

Following Smith and Chang [1], Fig. 1 assumes that the
ground plane below the truncated substrate is nontruncated.
This is to ensure, mathematically, a zero absolute potential on
the ground plane. In practice, while a microstrip line is printed
near an edge of a printed circuit board, the ground plane of the
printed circuit board is still large enough to ensure its near-zero
absolute potential. Further, when in operation, this ground
plane is clamped to an outside ground.
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Fig. 1. Microstrip line with a truncated substrate and the flowchart for the construction of asymptotes and synthetic asymptote. Material from outside has reference
numbers marked in the flowchart.

It is possible to derive similar formulas for the case of a
ground plane truncated along with the substrate, like that in
the subsequent paper of Smith and Chang [2]. This is not done
here because the nonzero potential at a smaller truncated ground
plane is less realistic.

Unlike [3], the microstrip of Fig. 1 is in an open space and not
in a metal enclosure. Since the enclosure is usually large enough
when compared with a chip, the enclosure causes little effect.

If the metal enclosure is small with the chip, or circuit board,
butting against it, an engineer may not design a line close to the
edge of the chip due to the likely low characteristic impedance.

Quasi-TEM propagation along the line is assumed for the mi-
crostrip line. The metal thickness of the microstrip line is also
assumed to be negligible.

II. FORMULATION OF FREE AND EQUIVALENT CHARGES ON

TRUNCATED SUBSTRATE

This formulation taken from [1] is an integral equation. An
integral equation is normally solved numerically. In this paper,
however, we shall interpret the formulation to generate the reg-
ular and synthetic asymptotes.

We now summarize the formulation. A microstrip line with a
truncated substrate is shown in Fig. 1. The microstrip line with
a truncated substrate in Fig. 1 has afree charge density
across the strip and the strip has a constant potential of 1 V.

Following Smith and Chang [1], the equivalent (free plus
bound) charge density can be solved by

(1)

where (1) gives a method of moments (MoM) solution andis
the interface contour boundary with the appropriate boundary
condition on the dielectric and conductor surfaces. Thepotential
Green’s function in (1) is two-dimensional (2-D) for a line
and is in free space.

With the equivalent charge solved, the free charge den-
sity is given by

(2)

The capacitance of the microstrip line with truncation is
given by integrating the free charge

(3)

Equations (1)–(3) complete the formulation of Smith and
Chang [1].
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Fig. 2. Equivalent charge distribution (truncated: solid line) along the
horizontal substrate surface (r=h � 6:5) and along thevertical truncated
surface (6:5 � r=h � 7:5). It is computed with the MoM from (1). The
distribution (nontruncated: dotted line) is also computed from the classical
image theory with the MoM.

III. I NTERPRETATION OF THEFORMULATION FOR THE

ASYMPTOTE OF AFAR TRUNCATION

MoM examples have been performed for this paper using our
software based on (1)–(3). Our results agree with the graphs in
[1], and are “perfectly” within the tolerance of the printed width
of the graphs.

Fig. 2 presents the first example. It shows that with MoM
computations,the equivalent charge density (magnitude) along
the horizontal air–dielectric of the truncated case(solid line)
is practically the same as that of the nontruncated case(dotted
line) by the image method, except for a narrow rise at the trun-
cating point.

On the vertical truncated surface (solid line:
), the equivalent charge density distribution starts at the same

order in magnitude as that at the nearby horizontal substrate
surface, but quickly drops to a very small value before reaching
the ground plane. The quick drop makes negligible the influence
of the equivalent charge on the vertical surface.

The two observations above indicate that the equivalent
charge on the substrate can be taken simply as that of the
regular (nontruncated) substrateuntil its truncation. This
means that by simply deleting the path of integrationin (1),
from the truncation point to infinity, we can get the reduced
free charge distribution on the strip. In other words,
from (2)

(4)

From the data of Fig. 2, we should have ,
measured from the center of the strip (or equivalently ,
measured from the strip edge). An integration of across the
strip gives us the change of capacitance.

The change is to be subtracted from , the capacitance
of a regular microstrip line with no truncation. The formula of
the capacitance is readily available in the Appendix. For a

Fig. 3. Multiple images of a charge on dielectric substrate, for the field in air
above the substrate.

formula of , we need an equation for the analytical integra-
tion of (4). Fortunately, this is possible with the multiple images
of the grounded substrate. This is derived in Section IV.

Equation (4) is afar asymptote equation, for large truncating
distance of . We still need anear asymptote equation. We
have difficulty in constructing this. However, we can construct
one “value” of the asymptoteright at the edge of the strip, i.e.,

or . This “value” is actually a synthetic asymp-
tote equation of the substrate thicknessand is derived in Sec-
tion VI.

IV. FAR ASYMPTOTE OF THEPOTENTIAL GREEN’S FUNCTION

OF A NONTRUNCATED SUBSTRATE

We begin with the nontruncated substrate and derive the
asymptote of the potential Green’s function at a large distance
from the charge source.

At large field distances, the conducting strip shrinks to a
line charge (i.e., point source in 2-D). A point charge on a
grounded substrate has multiple images. Fig. 3 shows the im-
ages for the field in the free space above the substrate. Each
image can be assumed to form, with a fraction of, a dipole
moment. The dipole moment of theth image is [4], [8]

(5)

where . Summing in Fig. 3 and after
some simple manipulations, the total dipole moment is simply
reduced to

(6)

for the potential field in free space above the substrate. With the
substrate grounded, there is not a net charge field, only the mul-
tipole fields. The lowest order of the latter is the dipole above
with the slowest decay from the source. In other words, on the
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Fig. 4. Far asymptote of the equivalent charge distribution (solid line) of (8) in
a log–log plot, to show its1=r dependence. The distribution from the images
(dotted line) of Fig. 2 is added for comparison.

air side of the substrate surface, the potential asymptote is the
dipole field of

(7)

where is the distance along the substrate measured from the
point charge. It may be interesting to point out that this simple
formula must be formerly obtained numerically throughimages,
complex [10] or classical [4]. The accuracy of this potential
asymptote is discussed below.

This potential asymptote is evidently proportional to the
basically vertical electric field in the dielectric of the non-
truncated case, i.e., . Through the boundary condi-
tion of a normal electric field, we get the equivalent charge den-
sity on the dielectric surface on the air side

(8)

Equation (8) shows that the equivalent charge distribution
decreases as , where is measured from the strip center.
To emphasize this dependence, the magnitude of (8) is plotted
(solid line) in the log–log scale in Fig. 4. Superimposed on it is
the same equivalent charge (dashed line) from the images solu-
tion in Fig. 2 (dashed line). We see that the agreement is very
good beyond theturning pointof distance

, where is measured from the edge of the strip.
Fig. 4 shows that, for large field distances beyond

, a charge and its images can simply be replaced by a
verticalpoint dipole of amplitude of (6). The potential Green’s
function is given by (7) with an equivalent charge density given
by (8).

V. FAR ASYMPTOTES OFCAPACITANCE—SUBSTRATE

TRUNCATION FAR FROM MICROSTRIPLINE

It may be noted that equivalent charge appears differently on
the opposite sides of the air–dielectric interface. Equation (8) is
derived for fields on the air side. For fields on the dielectric side,
the equivalent charge is the above multiplied by the factor.

We may now substitute (8) into (4) with the Green’s function
(1). We then get the reduction in thefreecharge density at the
center of the microstrip as

(9)

where the integration is from the truncation pointto infinity
. There is a multiplication factor of two inserted to account

for the substrate truncation onbothsides of the microstrip. As-
suming the reduction of free charge is constant over the strip
and of 1-V potential, we get, as mentioned before in (4), the re-
duction in the capacitance as

(10)

In other words, thefar asymptote of capacitance of the mi-
crostrip line with distant truncated substrate is then

(11)

as pointed out in Section II.

VI. CAPACITANCE WITH SUBSTRATE TRUNCATED RIGHT AT

THE EDGE OF THEMICROSTRIPLINE—A SYNTHETIC

ASYMPTOTE FORDIFFERENTSUBSTRATETHICKNESS

This is the capacitance value at one truncation point and really
is not an asymptote. The “value,” however, is a function of the
strip width, substrate thickness, and dielectric constant. It is, in
fact, a synthetic asymptote of the substrate thickness.

In Fig. 1, let us assume that the substrate is truncated right
on the edge of the substrate. Thenear asymptote of very thin
substrate is then

(12)

The second asymptote is when the substrate is very thick,
meaning that the strip is quite distant from the ground plane.
With the substrate still truncated at the edge of the strip, the
substrate becomes a thin vertical sheet below the distant strip.
There is actually mostly air between the strip and ground plane.
In other words, the presence of the substrate may be neglected
in this case.

The capacitance of a strip high above a ground plane at a
distance (i.e., from source to image) in free space is given
by

(13)

where the strip of width has been made equivalent to a round
wire of radius through conformal mapping.

A simple practice of constructing the synthetic asymptote is
to simply add the two regular asymptotes together. This means
that each regular asymptote not only have to behave properly in
approaching its own limit, but to approaching zero or a constant
at the other limit.
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The first asymptote of (12) behaves properly in this fashion.
The second asymptote of (13) does not. It can be made to behave
properly in this fashion by taking

(14)

Now the synthetic asymptote is obtained by adding (12) and
(14), i.e.,

(15)
This is a synthetic asymptote of substrate thickness. This

synthetic asymptote is surprisingly accurate with an average
error less than 1%. This accuracy is demonstrated in Figs. 5–7
in the impedances at truncations at the strip edge.

However, (15) is not a synthetic asymptote of truncation dis-
tance along the substrate and measured from the center of
the strip. To , it is just the value of a point at . We
may call this an asymptotic point.

It should be pointed out that the free chargein (2) and its
asymptotes in (4) are integrated from the equivalent charge

and a Green’s function. Therefore, they must be proportional
to voltage and, thus, a direct solution of the Laplace’s equation.
Since the integration of the free charge over the strip is the ca-
pacitance,the capacitance asymptote is also a solution of the
Laplace’s equation.

A solution of the Laplace’s equation has to be expressible
in the form of multipole expansion. As a result, we know an
asymptote of the capacitance must be in a form of multipole
expansion in terms of the (truncation) distance. The coefficient
of the dominant term can be found by matching the capacitance
at the above asymptote point. This is the asymptote at a short
truncation distance.

VII. SYNTHETIC ASYMPTOTE OFCAPACITANCE

We shall now assemble the (regular) asymptotes of the trun-
cation distance . The first one is the with approaching
infinity. From Section V, the asymptote has the form

(16)

where is taken from the Appendix, and is known from
(9)–(11), i.e.,

(17)

A simple choice of the synthetic asymptote may be the sum
of the two regular asymptotes, far asapproaches infinity, and
near as approaches the edge of the strip. The far asymptote
is (16) and contains the dc and vertical dipole term. The near
asymptote toward the strip edge needs only to contain the next
higher multipole. Due to the field pattern, a vertical quadrapole
does not have the vertical electric field on the horizontal sub-
strate surface to produce the equivalent charge. A verticaloc-
topoledoes. It is, therefore, the next higher multipole with, of

course, an unknown coefficient . Summing the two regular
asymptotes, we get the synthetic asymptote as

(18)

The coefficient of the octopole can be determined by
making of (15) at truncation at the edge of the strip,
i.e.,

(19)

Equation (18) is the desired synthetic asymptote of the capac-
itance of a microstrip line of width and truncating distance

. Its coefficients of , , , and are found in (17),
(19), (15), and the Appendix, respectively.

The next higher order multipole beyond the vertical octopole
is of the order 32, and not 16, again, because of their field pat-
terns. We expect the pole amplitude of order 32 should be very
small.

Equation (18) is for truncations at both sides of the microstrip
line shown in Fig. 1. If only one side is truncated, such as a
line running along the edge of a large printed circuit board, the
reduction of (10) is essentially halved. This simply means
that

(20)

This approximation to the one-sided truncation should be
more accurate than the two-sided case since only half of the
multipole corrections is used in (20). This, of course, depends
on the high accuracy of of the regular (nontruncated)
microstrip line shown in the Appendix. The high accuracy is
found to be the case. The average error, indeed, is found to be
half in the numerical results.

With (20), for all values, the characteristic impedance
and effective dielectric constant of the microstrip line with a
truncated substrate are easily determined by standard equations.

VIII. R ESULTS

The equivalent charge on the substrate surface in Figs. 2 and
4 has been discussed in Sections II–IV to help constructing the
asymptote of far truncation in Section V. There is no need to
discuss them further here.

Figs. 5–7 show and compare the results of the characteristic
impedance for all truncation distances. It is observed that the
characteristic impedance and effective dielectric constant

of the microstrip line with a truncated substrate calculated
by a synthetic asymptote technique agree with that of the MoM
of Smith and Chang [1]. The error details are listed in Figs. 5–7.

The maximum errors are6% for and 12% for at
of 24, approximately at truncations about one substrate distance

from the strip edge. The average errors are taken to be less
than half of the maximum values, say,3% for the characteristic
impedance. These are for the two-sided truncation case.

There is a rise in and a lowering of with closer trunca-
tions to the line. These are expected with the reduction of dielec-
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Fig. 5. Comparison of characteristic impedance of synthetic asymptote
technique (SAT) and MoM for awide line,W=h = 3, and two-sided substrate
truncation. The rise inZ from truncation is half as much for the one-sided
case.

Fig. 6. Comparison of characteristic impedance of SAT and MoM for a
medium widthline,W=h = 1, and two-sided substrate truncation.

tric material near the line. The rises are listed with the figures.
The percentage of rise in from truncation gets larger as
gets larger.

The rise in with one-sided substrate truncation is exactly
half of the two-sided case of the above. Therefore, the one-sided
case is not presented in this paper’s figures. As mentioned at
(20), the average error is also reduced to half in the one-sided
truncation, i.e., from 3% to 1.5%.

For whatever or ratio of strip width to substrate thickness
, the maximum errors seem to occur at a truncation distance

of 0.2–0.4 measured from the edge of the strip. This is the
nature of synthetic asymptote—maximum error occurs some-
where between the two regular asymptotes.

The effective dielectric constant or the speed of propaga-
tion is not compared with [1] in the figures. The reason is that
both the formulas of and come from the same formula of

in (20) or (18). Thus, if is found accurate, must also
be accurate, except with twice the error.

Fig. 7. Comparison of characteristic impedance of SAT and MoM for anarrow
line,W=h = 0:5, and two-sided substrate truncation.

IX. DISCUSSIONS

A microstrip line can be printed very close to the edge of the
circuit board. As mentioned in Section I, the disturbance from
the truncation at the edge of the circuit board can be easily com-
pensated by the formulas through an optimizing routine. The
derivedformulas are simple enough that the optimizing will be
very fast. This is economical both in the computation of opti-
mizing and in the size of the printed circuit board. The accuracy
will be high and the physical insight will be good. Such a pos-
sibility has been pointed out by Yamashita [3], except they had
only point-fitted formulas.

As shown in Fig. 1, while the substrate is truncated, the
ground plane is not. As explained in Section I-B, this arrange-
ment may be more practical in ensuring a zero ground plane
potential than that with the ground plane truncated.

Synthetic asymptote is a curve-fitting technique between two
(regular) asymptotes. Bracketed by two asymptotes, the largest
error must occur somewhere at the middle values of the param-
eter. Here, the largest error is 6% for for the two-sided sub-
strate truncation. For the one-sided truncation, at (20) and in the
numerical results in Section VIII, the largest error is then 3%.
Their averages appear to be less than half of these.

For two or more parameters of interest, a synthetic asymptote
procedure has to be applied more than once. While each pro-
cedure step of synthetic asymptote or derivation may be fairly
simple, there may be many steps. Confusion can be avoided if a
flowchart of the steps is added, as shown in Fig. 1.

Evidently, the asymptotes have been included in arriving at
many of the design formulas in the microwave literature for a
long time. One example is the characteristic impedance of a mi-
crostrip line (substrate nontruncated) [11], as shown in the Ap-
pendix. Another is Kirschning and Jansen’s effective dielectric
constant of microstrip versus frequency [12]. The improvement
is that while each of these formulas frequently has ten or more
curve-fitted constants, (20) hasnone.

Strictly speaking, the first term in (20) does have a few
(say, five) such constants, but this term does not come from the
synthetic asymptote of this paper, but is taken from [11]. If this
term is replaced by one derived from the synthetic asymptote as
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that in [13], there will indeed not be any such constants. This is
for an average error of 5% over the full range of substrate trun-
cation. With justtwocurve-fitted points added [13], the average
error is reduced to 2%.

The small number or void of curve-fitted constants, provides
clear physical insight to the behavior of a synthetic asymptote
formula. For example, in (20), the first term is the capacitance
for a nontruncated substrate, and the second and third are the
dipole and octopole corrections for the truncation. Similarly
clear insight is found in the formulas of [13].

APPENDIX

The capacitance of the untruncated substrate is from the
microstrip formulas in the literature [11], i.e.,

giving rise to

with being the light speed.
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